VISCOSITY OF ARGON AND OF ARGON-AMMONIA MIXTURES UNDER PRESSURES*

By MASARU HONGO

The viscosity of argon and of four argon-ammonia gaseous mixtures was measured using an oscillating disk viscometer at temperatures, 25, 50, 75, and 100° C; for argon, at the pressure range up to about 120×10^{5} Pa; and for argon-ammonia mixtures, up to around the saturated vapor pressure of ammonia at each temperature. The accuracy of the measurements was estimated to be within $\pm 0.3\%$.

The gas viscosity values of dilute binary mixtures were calculated by applying a correction factor, which was set up by use of critical compressibility factors. The calculated values were in better agreement with the experimental ones than those calculated by original Chapman-Enskog's method.

The initial density dependence of the viscosity, $\eta_0^{-1} \left(\partial \eta / \partial \rho \right)_{\rho \to 0}$, of argon-ammonia mixtures was obtained from the experimental values, and the effects of the concentration of nonpolar gases and of temperature on the initial density dependence were compared with those in the case of the nitrogen-ammonia system and of the hydrogen-ammonia system, where η is viscosity of gas, ρ density, and η_0 the viscosity extrapolated to zero density. It was concluded from the comparison that molecular association of polar gases was hindered by the presence of nonpolar molecules and by a rise in temperature, and that the larger the molecular weight of a nonpolar gas was, the more strongly the nonpolar molecules hindered moecular association of polar substances.

By taking into account the mole fraction of nonpolar gases, the initial density dependence of the viscosity could be correlated with the temperature reduced by the critical temperature of the mixtures, and a similar tendency was observed regardless of the system.

Introduction

This study is one of the researches to measure the gas viscosity of nonpolar-polar mixtures containing ammonia as a polar gas under pressures. The viscosities of the nitrogen-ammonia system¹⁾ and of the hydrogen-ammonia system²⁾ were already determined, and the viscosities of argon and of argon-ammonia mixtures are presented in this paper. In order to investigate the effect of the molecular weight of a nonpolar gas on the viscosity of a polar gas, argon was used because its molecular weight is larger than that of nitrogen. The viscosity of the argon-ammonia system under pressures was measured by Iwasaki et al.³⁾ using an oscillating disk viscometer, but only at 20 and 30°C. The viscosity at atmospheric psessure was measured by Chakraborti et al.⁴⁾ (25 to 80°C) using a capillary-

⁽Received September 30, 1978)

^{*} Presented in part at The 18th High Pressure Conference, Kyoto, Nov. 25th. 1977

¹⁾ M. Hongo and H. Iwasaki, This Journal, 47, 90 (1977)

²⁾ M. Hongo and H. Iwasaki, ibid., 48, 1 (1978)

³⁾ H. Iwasaki, J. Kestin, and A. Nagashima, J. Chem. Phys., 40, 2988 (1964)

⁴⁾ P.K. Chakraborti and P. Gray, Trans. Faraday Soc., 61, 2422 (1965)

64 M. Hongo

flow viscometer and by Rakshit et al.⁵⁾ (-35 to 35°C) by the use of an oscillating disk viscometer.

In this study, the measurements of the viscosity of argon-ammonia mixtures were performed on a precision oscillating disk viscometer, which was the same as that previously used^{1,2)}, at temperatures of 25, 50, 75, and 100° C, and over the range of pressure up to about 120×10^{5} Pa for argon and up to around the saturated vapor pressure of ammonia at each temperature for argon-ammonia mixtures. The mole fractions of argon in the mixtures were approximately 0.2, 0.4, 0.6, and 0.8.

Experimental Method and Calculation of Viscosity

The gas viscosity was evaluated by the same method as that used by Iwasaki *et al.*⁶⁾ The empirical value C_N' of the apparatus constant. C_N , required for the evaluation of the viscosity was determined by the calibration measurements which were made using nitrogen at temperature of 25°C and at pressures below 25×10^5 Pa. The value of C_N' obtained from the calibration measurements was 1.1355 from 25 to 75°C, and 1.1378 at 100°C.

The density of argon was obtained through the PV-values by Michels $et\ al.^{7}$) and that of argon-ammonia mixtures was evaluated from the Vri-chart⁸) in the same way as that used in the previous papers^{1,2}), where Vri is the ideal reduced molar volume.

Argon was supplied from the Nippon Oxygen Co., Ltd. and its purity was above 99.994%. Ammonia was purified through distillation as described before¹⁾.

The experimental accuracy was estimated to be within $\pm 0.3\%$.

Results

The viscosity values obtained for argon are shown in Table 1 and plotted as a viscosity vs. density diagram in Fig. 1. The deviations of the measured viscosity values from the smoothed curves are all within $\pm 0.2\%$. The slopes of the viscosity isotherm, $(\partial \eta/\partial \rho)_T$, are always positive and almost the same in the experimental conditions, where η is viscosity of gas and ρ is density. The viscosity of argon under pressures, so far, was measured by Michels $et\ al.^{9}$ from 0 to 75°C below 2000×10^5 Pa; by Iwasaki $et\ at.^{10}$ from 25 to 150°C up to 130×10^5 Pa; by Flynn $et\ al.^{11}$ from -78 to 100°C below 200×10^5 Pa; by Reynes $et\ al.^{12}$ from 100 to 200°C up to 830×10^5 Pa; and by Gracki $et\ al.^{13}$ from -100 to 25°C below 170×10^5 Pa. These measurements were made using a capillary-flow viscometer, except

⁵⁾ A.B. Rakshit, C.S. Roy, and A.K. Barua, J. Chem. Phys., 59, 3633 (1973)

⁶⁾ H. Iwasaki and J. Kestin, Physica, 29, 1345 (1963)

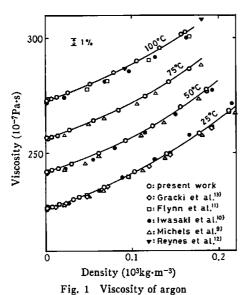
⁷⁾ A. Michels, Hub. Wijker and Hk. Wijker, ibid., 15, 627 (1949)

⁸⁾ K. Satoh, "Bussei Josu Suisanho", Maruzen, Japan (1954)

⁹⁾ A. Michels, A. Botzen and W. Schuurman, Physica, 20, 1141 (1954)

¹⁰⁾ H. Iwasaki and H. Takahashi, Bull. Chem. Res. Inst. Non-aqueous Solutions, Tohoku Univ., 6,61 (1956)

¹¹⁾ G.P. Flynn, R.V. Hanks, N.A. Lemaire, and J. Ross, J. Chem. Phys., 38, 154 (1963)


¹²⁾ E.G. Reynes and G. Thodos, Physica, 30, 1529 (1964)

¹³⁾ J.A. Gracki, G.P.Flynn and J. Ross, J. Chem. Phys., 51, 3856 (1969)

Viscosity of Argon and of Argon-Ammonia Mixtures under Pressures

Table 1 Viscosity of argon

Pressure 10 ⁵ Pa	Density 103 kg·m-3	Viscosity 10 ⁻⁷ Pa·s	Pressure 10 ⁵ Pa	Density 10 ³ kg·m ⁻³	Viscosity 10 ⁻⁷ Pa·s
	25 °C			75 [©] C	
1.23 1.47 2.52 5.06 5.12 10.15 10.19 20.39 23.94	0.00197 0.00136 0.00405 0.00812 0.00822 0.01637 0.03323 0.03919	226.1 226.6 226.7 226.8 226.9 228.1 227.9 229.9 231.0	1.25 1.26 2.03 5.17 10.11 20.37 41.38 61.11 82.43	0.00173 0.00173 0.00278 0.00710 0.01388 0.02815 0.05350 0.08525 0.1152	256.5 256.6 256.4 257.0 257.5 259.7 264.1 264.1 264.5 274.5
41.17 61.73 83.18 104.59 125.30 125.35	0.06797 0.1030 0.1398 0.17696 0.21291 0.21296	235.4 242.0 249.7 258.6 267.9 268.2	102.81 113.39	0.14378 0.16687 100°C	280.7 286.4 272.8
	50°C		1.36 2.03 5.06	0.00176 0.00262 0.00654	273.0 273.5 273.6
1.24 1.52 1.54 5.12 5.12 10.12	0.00183 0.00225 0.00228 0.00757 0.00757	242.0 242.1 242.0 242.8 242.7 243.5	10.11 20.27 40.44 61.05 82.12 102.60	0.01308 0.02614 0.05227 0.07093 0.1062 0.13244	274.5 276.4 280.0 285.1 290.1 295.9
10.19 20.42 41.16 61.29 81.38 102.24 121.54	0.01508 0.03054 0.06212 0.09299 0.1240 0.15639 0.18595	243.5 245.4 250.0 255.6 261.8 270.1 276.8 277.5	122.01	0.15716 0.16219	301.7 302.8

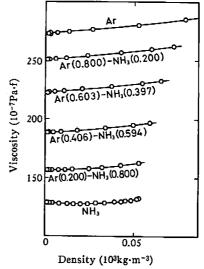


Fig. 2 Viscosity of argon-ammonia system at 100°C

that of Iwasaki et al.¹⁰⁾ who used an oscillating disk viscometer. As shown in Fig. 1, the viscosity values obtained in this work are in agreement with those obtained in the investigations mentioned above within the experimental error.

The viscosity measurements for four argon-ammonia mixtures were carried out at the same temperatures as for argon and at pressures up to around the saturated vapor pressure of ammonia at each temperature, i.e., about 10×10^5 Pa at 25° C, 20×10^5 Pa at 50° C, 35×10^5 Pa at 75° C, and 60×10^5 Pa at 100° C. The viscosity values obtained for the mixtures are given in Table 2. The results obtained for the gaseous mixtures at 100° C are shown in Fig. 2. The viscosity values of pure ammonia shown in Fig. 2 are those reported in Ref. 1. As shown in Fig. 2, the initial slope of the viscosity-density curves for the gaseous mixtures, $(\partial \eta/\partial \rho)_{\rho \to 0}$, increases as the mole fraction of argon increases, and becomes nearly constant above 0.406 mole fraction of argon.

Table 2 Viscosity of argon-ammonia mixtures

Pressure	Density	Viscosity	Pressure	Density	Viscosity	Pressure	Density	Viscosity
	103 kg·m ⁻³			103kg·m-3		105 Pa	103 kg·m ⁻³	
	25 °C			50°C			75°C	
A~(0	.208)-NH ₃ (0	7023	A=10	.600)-NH,(0	100)	3m/0		2051
				-		Ar(0,794)-NH,(0,206)		
1.23 1.33	0.00108 0.00117	129.5 129.5	1.24 1.30	0.00142 0.00149	196.4 196.7	1.24	0.00150	234.7
2 52	0.00223	129.5	2.02				0.00247	234.7
2.53			3.04	0.00231	196.5	5.09	0.00619	235.2
4.54	0.00399	129.2	3.04	0.00349	196.8	10.11	0.01231	236.1
6.65	0.00591	129.0	5.12	0.00590	197.2	15.23	0.01864	237.0
8.67	0.00787	129.0	10.13	0.01179	197.8	25.30	C.03136	238.9
10.18	0.009425	128.8	15.26	0.01803	198.5	36.16	0.04540	240.8
Ar(0	.397)-NH3(0	.603)	20.25 22.69	0.02440 0.02758	199.6 199.9	39.41	0.04958	241.5
1.23	0.00129	157.5					100°C	
1.41	0.00149	157.7	Ar(Q	.801)-NH ₃ (0	.199)		200 0	
3,06	0.00323	157.8	1.23	0.00161	220.9	4=(0	200)-NH3(0	ROOS
5.12	0.00539	158.0	1.26	0.00165	221.0			
7,10	0.00763	158.1	2.03	0.00267	221.1	1.18	0.000819	156.3
			3.05	0.00400		1.26	0.000876	156.4
9.17	0.0100	156.1			221.2	1.44	0.00100	156.5
10.58	0.01183	156.4	5.08	0.00568	221.5	2.03	0.00141	156.4
Arco	.602)-NH;(0	. 398)	10,13	0.01342	222.7	3.00	0.00209	156.5
	_		15.18	0.82034	223.3	5.07	0.00353	156.4
1.18	C.00146	184.8	20.32	0.02749	224.2	10.13	0.007260	156.5
1.28	0.00159	185.0	24.15	0.03285	225.0	15.15	0.01112	156.7
3.01	0.00374	185.1		_		20.27	0.01512	157.0
5.16	0.00641	185.7		75 °C				
7.63	0.00961	186.0				31.76	0.02441	157.6
9.90	0.0126	166.2	Ar(0	.202)-NH (0	.798)	40.43	0.03193	158.7
11,42	0.01467	186.4				51.06	0.04228	160.5
			1.20	0,000895	148.0	60,56	0.05269	162.5
Ar(0	.800)-NH ₃ (0	200)	1.25	0.000933	148.0	4=(0	406)-NH,(0	5943
1.25	0.00178	208.4	2.03	0.00152	148.0			
1.45	0.00207	208.2	5.06	0.00378	148.0	1.24	0.00105	188.2
2.99	0.00207	208.5	10.14	0.007830	148.1	2.04	0.00173	108.3
2.33	0.00733	208.9	20.28	0.01650	148.4	5.05	0.00428	188.5
5.14			30.82	0.02642	149.1	10.13	0.008730	189.0
7.15	0.0103	209.2	35.76	0.03112	149.5	20.29	0.01788	190.1
10.22	0.01489	209.9				36.52	0.03362	192.2
12.35	0.01835	210.3	Ar(0	.394)-NH ₃ (9	.506)	51.70	0.04938	194.9
	50°C		1.18	0.00106	177.6	60.80	0.05907	196.8
	50°C		1.24	0.00111	177.4	•	•	
			2.01	0.00181	177.7	Ar(D	.603)-NH,(0	.397)
0) 7 A	.211)-NH3((789)	5.08	0.00457	177.9	1.22	0.00121	222.0
1.17	0.000949	140.2	10.14	0.009363	178.3	2.03	0.00202	222.2
1.26	0.00102	140.4	20.34	0.01947	179.2	5.05	0.00502	223.0
2.03	0.00165	140.2	31.15	0.03080	180.6	10.14	0.01019	223.5
5.08	0.00420	140.2	36.74	0.03682	181.5	20.29	0.02064	225.2
3.00	0.00420	140.2				36.11	0.03771	227.5
10.17			Ar(0	.597)-NH3(0	.403)	51.39	0.05455	230.2
15.18	0.01349	140.2		-				230.2
20.39	0.01868	140.4	1.22	0.00129	208.2	60.86	0.06520	
Ar(0	.403)-NH3(3.597)	1.37 2.03	0.001¤5 0.00215	208.3 208.6	Ar(G	. 800)-NH,(0	.200)
1.23	0.00120	168.3	5.07	0.00538	209.2	1.24	0.00141	250.3
1.42	0.00139	168.3	10.13	0.01089	209.8	2.03	0.00231	250.4
2.51	0.00139	168.4	20.27	0.02228	211.4	5.05	0.00576	251.0
7.31	0.00248	168.7	30.92	0.02228	213.2	10.13	0.01155	251.7
5.09		169.2				20.30	0.02342	253.9
10.17	0.01028		37.43	0.04278	214.3			
15.14	0.01566	169.5				36.50	0.04239	256.4
20.29 21.21	0.02154	170.0				51.44	0.05979	259.4 261.9
	0.02268	170.3				61.78	0.07247	751.9

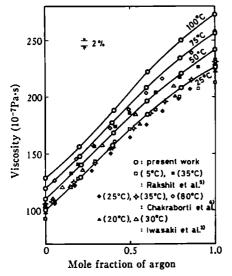


Fig. 3 Viscosity of argon-ammonia system at atmospheric pressure

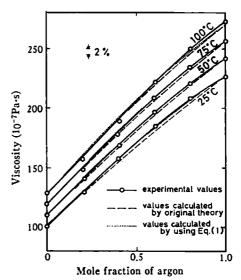


Fig. 4 Comparison of experimental value with original theoretical one and calculated one using Eq. (1) in argon-ammonia system

The viscosity values at atmospheric pressure $(1.013 \times 10^5 \text{ Pa})$ were determined in this work through the extrapolation of the viscosity vs. pressure curves to 1 atm, and are shown in Fig. 3 in comparison with the other investigations: by Iwasaki et al.3) (20 and 30°C), by Chakraborti et al.4) (25, 35, and 80°C), and by Rakshit et al.5) (5 and 35°C). The values obtained by Iwasaki et al.3) show the similar tendency with those obtained in this work, but those obtained by Chakraborti et al.4) are found to be roughly linear and those obtained by Rakshit et al.5) are seen to be more convex than those obtained in this work.

Discussion

Prediction of gas viscosity for nonpolar-polar mixtures by applying a correction factor

According to Chapman-Enskog's theory¹⁴⁾, the gas viscosity of a dilute binary mixture is given to the first approximation by Eq. (8.2-22) in Ref. 14. If the force constants of pure components are known, the viscosity of binary mixtures can be obtained theoretically. The Lennard-Jones potential function was applied for the nonpolar molecules and the Stockmayer potential function was done for the polar molecules. The force constants of argon were determined by use of the theoretical equation to the third approximation, Eq. (8.2-19) in Ref. 14, and the present experimental viscosity values at

¹⁴⁾ J.O. Hirschfelder, C.F. Curtiss and R.B. Bird, "Molecular Theory of Gases and Liquids", John Wiley & Sons, Inc., New York (1954)

68 M. Hongo

atmospheric pressure. The force constants obtained were as follows:

Ar:
$$\sigma_n = 3.44_2 [\text{Å}], \quad \varepsilon_n/k = 116 [\text{K}]$$

where σ_n and ε_n are the Lennard-Jones potential parameters. The theoretical viscosity of argon $[\gamma_1]_1$ required for the calculation of the viscosity of the binary mixtures $[\gamma_{mix}]_1$ in Eq. (8.2-22) in Ref. 14 was calculated from Eq. (8.2-19) (k=3) using its force constants presented above and that of ammonia $[\gamma_2]_1$ had been already calculated in Ref. 2. The force constants between nonpolar and polar molecules were obtained from the combining law, Eqs. (8.6-3) and (8.6-4) in Ref. 14. The theoretical viscosity values of the binary mixtures based on Chapman-Enskog's theory are shown by the dashed line, and the experimental values obtained in this work are denoted by the solid line in Fig. 4. As shown in this figure, the deviation of the theoretical values from the experimental ones is 2% at maximum.

In order to make the deviation smaller, a correction factor was introduced into the combining law as follows²):

$$(\varepsilon_{\rm np}/k)' = \varepsilon_{\rm np}/k \left\{ (Z_{\rm en})^{1/2} + (Z_{\rm ep})^{1/2} \right\}^{-2} \tag{1}$$

where ε_{np} is a force constant between nonpolar and polar molecular interactions obtained from Eq. (8.6-4) in Ref. 14; k is the Boltzman constant; and Z_{cn} and Z_{cp} are critical compressibility factors of nonpolar and polar substances, respectively. The viscosity values of the gaseous mixtures obtained by applying Eq. (1) are shown by the dotted line in Fig. 4. Apparently the values calculated by using Eq. (1) agree better with the experimental ones than the original theoretical ones do in the argonammonia system, as well as in the hydrogen-ammonia system and in the nitrogen-ammonia system²⁾.

Temp. (°C)	XAr	70	œ'	β'	7'-10-1
	0.0005)	101.0	-3.58	-169	1430
	0.208	129.5	-0.379	- 64.2	488
25	0:397	157.3	1.71	-218	1050
	0.602	184.7	0.661	31.2	230
	0.800	208.1	0.414	16.1	39.2
	1.000	225.1	0.451	2.39	0.193
	0.000*)	110.4	-2.80	_ 9 52	268
	0.211	140.3	-0.0321		90.5
50	0.403	168.1	1.01		156
30	0.600	196.3	0.730		24.3
	0.801	220.6	0.811		29.3
	1.000	241.9	0.394	- 15.8 2.46	0.188
	0.000 ^{b)}	119.8	-2.20	E 2 C	- 25.0
	0.202	119.5	0.0559		11.3
75	0.202	177.4	0.551		17.8
/3	0.597	208.1	0.864		14.2
	0.794	234.4	0.537		4.65
	1.000	256.1	0.537	2.39 - 8.53 - 14.1 - 54.9 - 8.77 - 15.8 - 2.46 - 53.6 - 5.33 - 4.62 - 9.83 - 3.66 - 0.755 - 27.3 - 18.7 - 1.64 - 10.8	0.316
	0.000 ^{b)}				
	0.000	128.9	-1.03		1.71
	0.200	156.5	-0.0876		- 5.83
100	0.406	188.1	0.556		0.370
	0.603	221.9	0.893		13.0
	0.800	250.0	0.729		5.72
	1.000	272.9	0.430	1.72	0.123

Table 3 Value of constants in Eq. (3)n)

b) listed in Table 5 in Ref. 1

a) $\eta = \eta_0 (1 + \alpha' \rho + \beta' \rho^2 + \gamma' \rho^3)$ η : 10^{-7} Pa·s ρ : $10^3 \text{kg·m}^{-3} = \text{g·cm}^{-3}$

Initial density dependence of the viscosity for argon-ammonia mixtures

The viscosity of gases under pressures depends on pressure or density, and can be expressed in a power series expansion in density:

$$\eta = \eta_o \left(1 + \alpha' \rho + \cdot \cdot \cdot \right) \tag{2}$$

where η_o is the viscosity extrapolated to zero density and $\alpha' = \eta_o^{-1} (\partial \eta/\partial \rho)_{\rho \to 0}$ denotes the initial density dependence of the viscosity¹⁾. The viscosity of polar gases decreases with increasing pressure or density in lower temperature region, and after having a minimum increases with increasing pressure or density above a certain temperature. For polar gases, the decrease in viscosity is observed in the low pressure or density region below a certain temperature, that is, it is found that α' is negative. In order to investigate the effect of argon concentration upon α' of argon-ammonia mixtures, the gas viscosity was represented by a cubic equation of density as follows:

The constants in Eq. (3) were calculated from the experimental viscosity values by means of the least-squares method, and are listed in Table 3. The relation between α' and the mole fraction of argon, x_{Ar} , at each temperature is shown in Fig. 5. α' is almost constant above $x_{Ar}=0.6$. Approximating three isothermal points in lower concentration region of argon with a straight line, each

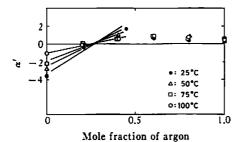


Fig. 5 Initial density dependence of argon-ammonia system

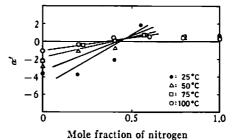


Fig. 6 Initial density dependence of nitrogen-ammonia system

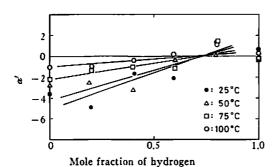


Fig. 7 Initial density dependence of hydrogenammonia system

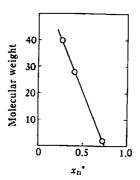


Fig. 8 Relation between molecular weight of nonpolar gas and x_n °

70 M. Hongo

straight line and $\alpha'=0$ cross at the point $x_{Ar} = 0.25$, that is, $x_{Ar} = 0.25$ where $x_{Ar} = 0.25$ is the mole fraction of argon at the point of intersection of straight lines across $\alpha'=0$. The relation similar to Fig. 5 is shown in Figs. 6 and 7 for the nitrogen-ammonia system¹⁾ and for the hydrogen-ammonia system²⁾, respectively. Figure 6 shows that α' is nearly constant above $x_{N2}=0.8$, and that $x_{N2} = 0.8$ is about 0.4 in the nitrogen-ammonia system. Figure 7 shows that $x_{H2} = 0.8$ is about 0.7 in the hydrogen-ammonia system. Thus, it is concluded that α' increases with an increase in temperature and in mole fraction of nonpolar gases, and that the smaller the molecular weight of nonpolar gases is, the larger the $x_n = 0.8$ is, where the subscript n denotes a nonpolar gas. Figure 8 shows that an approximately linear relationship exists between the molecular weight of nonpolar gases and the $x_n = 0.8$.

Polar gases show the initial decrease in viscosity below a certain temperature. Singh et al. 15) discussed that the anomalous behavior of the viscosity of polar gases was ascribed to molecular association. Therefore, as described in the previous papers 1.2), Figs. $5\sim7$ suggest that a rise in temperature and the presence of nonpolar molecules hinder molecular association of polar gases. Figure 8 shows that the larger the molecular weight of a nonpolar gas is, the smaller the x_n° is. Namely, this figure suggests that the larger the molecular weight of a nonpolar gas is, the more strongly the nonpolar molecules hinder molecular association of polar substances.

The critical temperatures of the gaseous mixtures were determined by taking into account the mole fraction in place of the molecular weight of nonpolar gases, and correlated to α' . The critical temperature of the mixtures was calculated by use of Chueh-Prausnitz's method¹⁶.

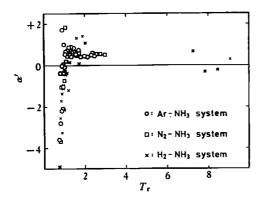


Fig. 9 Correlation between α' and reduced temperature T_r

$$T_{\rm em} = \sum_{j} \theta_{j} T_{\rm ej} + \sum_{i} \sum_{j} \theta_{i} \theta_{j} \tau_{ij}$$
 (4)

$$\theta_{\rm j} = x_{\rm j} V_{\rm ej}^{2/3} / \sum_{i} x_{i} V C_{i}^{2/3}$$
 (5)

where $T_{\rm em}$ is true mixture critical temperature, $T_{\rm ej}$ critical temperature of component j, $\tau_{\rm ij}$ an interaction parameter, $x_{\rm j}$ mole fraction of j, and $V_{\rm ej}$ critical volume of j. Figure 9 shows the

¹⁵⁾ Y. Singh, S.K. Deb and A. K. Barua, J. Chem. Phys., 46, 4036 (1967)

¹⁶⁾ R. C. Reid, J. M. Prausnitz and T. K. Sherwood, "The Properties of Gases and Liquids", Third Edition, McGraw-Hill Book Co., New York (1977)

71

correlation between α' and the reduced temperature, T_r , where $T_r = T/T_{\rm em}$. In this figure, a similar tendency is observed for the three systems, and this pattern resembles the relations between the reduced second and third virial coefficients and the temperature reduced by the potential parameter¹⁴).

Acknowledgment

The author is sincerely grateful to Professor H. Iwasaki for his continuing interest, encouragement and helpful discussions during this work. The author also wishes to thank Dr. S. Takahashi for many useful suggestions in this paper and Professor T. Makita (Kobe Univ.) for valuable advice with the correlation.

Chemical Research Institute of Non-Aqueous Solutions Tohoku University Sendai Japan