

THE OF PRESSURE ON THE DISSOCIATION OF ELECTROLYTIC SOLUTION

I. Electrical Conductivity of Hexammine Cobalt (III) Chloride at High Pressures

By Kiyoshi Shimizu, Hideto Takizawa and Jiro Osugi

From the equivalent conductivity, Λ , of dilute solution $(1.0 \times 10^{-4} \sim 1.0 \times 10^{-3}N)$ of $[Co(NH_3)_6]Cl_3$ at 25°C under high pressure up to $600 \, \text{kg/cm}^2$, the degree of dissociation, α , and the dissociation constant, K, of $[Co(NH_3)_6]Cl^{2+}$ formed between $[Co(NH_3)_6]^{3+}$ and Cl^- have been determined. Λ increases with increasing pressure. α and K have the minimum values at about $400 \, \text{kg/cm}^2$ and the volume change, ΔV , caused by dissociation, are $17 \, \text{cm}^3/\text{mole}$ at $300 \, \text{kg/cm}^2$ and $-13 \, \text{cm}^3/\text{mole}$ at $500 \, \text{kg/cm}^2$. The equivalent conductivity at infinite dilution, Λ_0 , increases from 183.3 to 189.0 under pressure. This may be due to the increase of the ionic mobility which is related with the viscosity of water. The increase of Λ , therefore, may be mainly ascribed to the increase of ionic mobility under pressure.

Introduction

It was shown by Hamann and Strauss¹⁾ that the ionization of the simple electrolytes were enhanced at high pressures. From the equivalent conductivities, Λ , of the dilute solutions under high pressures, the variations of the degree of dissociation, α , the dissociation constant, K, and the equivalent conductivity at infinite dilution, Λ_0 , are determined, and also it is possible to estimate the amount of the volume change, ΔV , due to the dissociation of the electrolytes. The authors have studied the ionic conductivity of the water solution of a complex, $[Co(NH_3)_6]Cl_3$, at 25°C up to 600kg/cm^2 and examined the pressure effects on α , K and Λ_0 .

Experimentals

Hexammine cobalt (III) chloride, $[Co(NH_3)_6]Cl_3$, was prepared from the water solution of cobaltous chloride, ammonia, ammonium chloride and decolorizing charcoal as a catalyst by the method of Bjerrum and McReynolds²). The crystals were thoroughly washed with conductivity water and absolute alcohol, then dried to a constant weight at $80 \sim 100^{\circ}$ C.

As shown in Fig. 1, the conductivity cell made of teflon, of capacity 25 ml and cell constant 0.322 cm⁻¹, was mounted in a high pressure vessel containing a thermocouple of chromel-alumel as in the previous paper³). The solution, which was isolated with mercury in a glass cup from

⁽Received August 1, 1963)

¹⁾ S. D. Hamann and W.Strauss, Trans. Faraday Soc., 51, 1684 (1955)

²⁾ W. C. Fernelius, Inorganic Syntheses, II, p. 216 (1946) McGraw-Hill

³⁾ K. Shimizu, This Journal, 30, 73 (1960)

K. Shimizu, H. Takizawa and J. Osugi

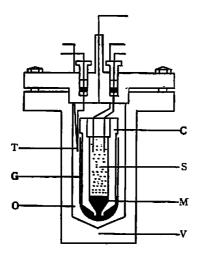


Fig. 1 High pressure conductivity cell

V: high pressure vessel

M: mercury
S: solution
C: teflon cell
O: silicone oil
G: glass cup
T: thermocouple

a silicone oil, was compressed by an oil injector. The pressures were measured by a calibrated Bourdon-type gauge. The pressure vessel was immersed in a temperature bath of liquid paraffin. The conductivity was measured at a temperature 25° C, at pressures $1\sim600\,\mathrm{kg/cm^2}$ and at concentrations of solution $1.0\times10^{-4}\sim1.0\times10^{-3}\,N$. In order to calculate the equivalent conductivity of solutions under high pressures, it is necessary to know their compressibility. No such data are available for the hexammine cobalt (III) chloride solutions and thus the calculations were made in terms of the compressibility of water⁴).

Results and Considerations

The equivalent conductivity, Λ , increases with increasing pressure as shown in Fig. 2. As the equivalent conductivity is proportional to ionic mobility and the degree of ionization, the effects of pressure on the ionic mobility and degree of ionization should be examined.

Fig. 3 shows the plots of the equivalent conductivity, Λ , against square root of equivalent concentration, $C^{1/2}$, which follows Kohlrausch's empirical low. The experimental conductivity curves lie slightly below Onsager's theoretical lines. This slight difference may be attributed to ion-pair $[Co(NH_a)_a]Cl^{2+}$ formed between $[Co(NH_a)_a]^{3+}$ ion and Cl^- ion as pointed out by Linhard and Monk⁵⁾. Then, the ion-pair $[Co(NH_3)_a]Cl^{2+}$ would be in equilibrium with $[Co(NH_a)_a]^{1+}$ and Cl^- :

$$[\operatorname{Co(NH_3)_6}]^{\text{Cl}^2+} \longrightarrow [\operatorname{Co(NH_3)_6}]^{\text{s+}} + \operatorname{Cl^-}_{\alpha m}$$

where α is the degree of dissociation and m is molar concentration. The equivalent conductivity

⁴⁾ R. E. Gibson and O. H. Loeffler, J. Am. Chem. Soc., 63, 898 (1941)

⁵⁾ V. M. Linhard, Z. Elektrochem., 50, 224 (1944)

I. L. Jenkins and C. B. Monk, J. Chem. Soc., 1951, 68

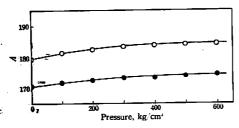


Fig. 2 Pressure dependence of equivalent conductivity of [Co(NH₃)₆]Cl₃

---: 1.0×10⁻⁴ N

 $-: 1.0 \times 10^{-3} \text{ N}$

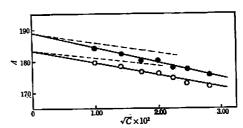


Fig. 3 Equivalent conductivity of [Co(NH₃)₆]Cl₃ at two pressures

-○-: 1 kg/cm²
-•-: 600 kg/cm²

---: Onsager's theoretical line

is as follows,

$$AC = 10^3 \kappa = \sum_{i} Z_i m_i \lambda_i,$$

where κ is the solvent-corrected specific conductivity, Z_i the ion valency of ith ion, m_i the concentration (g ion/l) and λ_i the ionic conductivity.

Then,

$$AC = 3\alpha m (\lambda_{[Co(NH_3)_6]^{3+}} + \lambda_{Cl^{-}}) + 2(1-\alpha) m (\lambda_{[Co(NH_3)_6]Cl^{2+}} + \lambda_{Cl^{-}}).$$

$$A = \alpha A^{31} + \frac{2}{3} (1 - \alpha) A^{21} = \alpha \left\{ \left(A_0^{31} - \frac{2}{3} A_0^{21} \right) - \left(b^{31} - \frac{2}{3} b^{21} \right) I^{1/2} \right\}$$

$$+ \frac{2}{3} (A_0^{21} - b^{21} I^{1/2}),$$

$$(1)$$

where

$$\lambda_{[Co(NH_3)_6]^{3+}} + \lambda_{Cl} - = \Lambda^{31} = \Lambda_0^{31} - b^{31}I^{1/2},$$

$$\lambda_{[Co(NH_3)_6]Cl^{2+}} + \lambda_{Cl^{-}} = \Lambda^{21} = \Lambda_0^{21} - b^{21}I^{1/2}$$

and ionic strength, I, is equal to $C(1+\alpha)$.

In this case, the ionic mobility of the bivalent ion-pair is taken as two-thirds of that of the tervalent cation. The degree of dissociation, α , is obtained from Eq. (1) and the experimental values of Λ under pressures by means of successive approximation.

The dissociation constant, K, is represented by the following equation,

$$K = \frac{\{[\text{Co(NH}_3)_6]^{3+}\} \cdot \{\text{Cl}^-\}}{\{[\text{Co(NH}_3)_6]\text{Cl}^{2+}\}} = \frac{\alpha(2+\alpha)mf_1f_2}{(1-\alpha)f_3},$$
 (2)

where f_4 (1, 2, 3) are the activity coefficients of $[Co(NH_3)_6]^{3+}$, Cl^- and $[Co(NH_3)_6]Cl^{2+}$, which have been calculated from the Debye-Hückel equation,

3

K. Shimizu, H. Takizawa and J. Osugi

$$-\log f_i = 0.509 Z_i^2 I^{1/2}$$
.

The results are shown in Table 1, Figs. 4 and 5. As shown in figures, the degree of dis

Table 1 A, α and K under pressures

P (kg/cm²)	Λ_0	$1 \times 10^{-4} N$			2×10 ⁻⁴ N			3×10 ⁻⁴ N		
		Λ	α	K-10 ³	Λ	α	K·10³	Λ	α	K-10³
1	183.3	179.5	0.9929	13	177.9	0.9896	17	176.6	0.9859	18
100	185.8	181.3	0.9859	6.3	179.5	0.9789	8.0	178.2	0.9754	10
200	186.9	182.3	0.9836	5.6	180.4	0.9767	7.3	179.0	0.9718	8.7
300	188.0	183.2	0.9813	4.8	181.3	0.9743	6.6	179.8	0.9683	7.7
400	188.7	183.9	0.9813	4.7	181.9	0.9731	6.3	180.3	0.9660	7.2
500	189.0	184.2	0.9813	4.8	182.3	0.9742	6.6	180.8	0.9683	7.8
600	189.0	184.3	0.9823	5.1	182.3	0.9740	6.6	180.9	0.9692	8.1

P (kg/cm²)	5×10 ⁻⁴ N				8 × 10 ⁻⁴ N	,	10×10 ⁻⁴ N		
	Λ	α	K•103	Λ	α	K-103	. Л	α	K•103
1.	174.7	0.9823	22	172.4	0.9768	26	171.2	0.9749	28
100	175.8	0,9654	11	173.3	0.9572	13	171.9	0.9527	15
200	176.7	0.9629	10	174.1	0.9535	12	172.6	0.9477	13
300	177.3	0.9570	8.9	174.6	0.9462	11	173.0	0,9390	11
400	177.8	0.9546	8.4	175.0	0.9426	10	173.5	0.9367	11
500	178.4	0.9581	9.0	175.5	0.9449	11	173.9	0.9376	11
600	178.7	0.9617	10	175.8	0.9483	11	174.4	0.9435	12

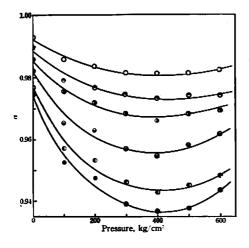


Fig. 4 Pressure dependence of degree of dissociation of [Co(NH₃)₆]Cl₃

-O-: 1.0×10-4N

---: 2.0 //

-()-: 3.0 "

-**D**-: 8.0 "

---: 10.0 //

sociation of each solution and the dissociation constant have the minimum values at about 400 kg/cm². The pressure coefficient of $\ln K$ gives the volume change, ΔV , due to the dissociation according to the thermodynamical relation as follows,

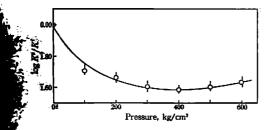


Fig. 5 Pressure dependence of $log K^p/K^1$ of $[Co(NH_3)_6]Cl_3$

$$\left(\frac{\partial \ln K}{\partial P}\right)_{T} = -\frac{\Delta V}{RT}.\tag{4}$$

 ΔV are 17 cm³/mole at 300 kg/cm² and -13 cm⁵/mole at 500 kg/cm², the sign of ΔV changing from positive to negative at about 400 kg/cm². ΔV may be equal to $\Delta V_1 + \Delta V_2$. ΔV_1 is the volume change of ions themselves and positive in this system. ΔV_2 is the volume change of solvent attracted by ions under pressures and negative because of the increase of ionic valencies. ΔV_1 would be predominant at lower pressure so that ΔV is positive. At higher pressure, ΔV_2 would take place of ΔV_1 , for water, of which the dielectric constant increases with increasing pressure⁶, would be attracted much more by ions. Then pressure would favour the dissociation of ion-pair to cation and chloride ion.

Fig. 6 Pressure dependence of equivalent conductivity at infinite dilution of [Co(NH₃)₆]Cl₃ and viscosity of water

 $-\bigcirc : \Lambda_0^p/\Lambda_0^1$

-()-: η^p/η^1 at 23°C (Cohen)

-●-: // at 30°C (Bridgman)

The equivalent conductivity at the infinite dilution, Λ_0 , increases from 183.3 to 189.0 with increasing pressure as shown in Table 1. This may be due to the increase of the ionic mobilily, which is related with the viscosity of water, η . The variation of Λ_0 and η by pressure have similar tendencies as shown in Fig. 6. although Walden's rule is not best obeyed by this electrolyte. The increase of Λ by pressure, therefore, may be mainly ascribed to the increase of ionic mobility.

The authors have great pleasure in expressing their sincere thanks to the Department of Education for the Grant in Aid for Fundamental Scientific Research.

The Laboratory of Physical Chemistry Kyoto University Kyoto, Japan

⁶⁾ B. K. P. Scaife, Proc. phys. Soc., B68, 790 (1955)